Bile salt-induced vesicle-to-micelle transition in catanionic surfactant systems: steric and electrostatic interactions.

نویسندگان

  • Lingxiang Jiang
  • Ke Wang
  • Manli Deng
  • Yilin Wang
  • Jianbin Huang
چکیده

The vesicle-to-micelle transition (VMT) was realized in catanionic surfactant systems by the addition of two kinds of bile salts, sodium cholate (SC) and sodium deoxycholate (SDC). It was found that steric interaction between the bile salt and catanionic surfactant plays an important role in catanionic surfactant systems that are usually thought to be dominated by electrostatic interaction. The facial amphiphilic structure and large occupied area of the bile salt are crucial to the enlargement of the average surfactant headgroup area and result in the VMT. Moreover, bile salts can also induce a macroscopic phase transition. Freeze-fracture transmission electron microscopy, dynamic light scattering, isothermal titration calorimetry, and absorbance measurements were used to follow the VMT process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micelle-to-vesicle transition induced by organic additives in catanionic surfactant systems.

A micelle-to-vesicle transition (MVT) induced by the addition of a series of apolar hydrocarbons (n-butylbenzene, n-hexane, n-octane, and n-dodecane) to the catanionic surfactant system n-dodecyltriethylammonium bromide/sodium n-dodecylsulfate (DTEAB/SDS) has been investigated for the first time by means of rheology and turbidity measurements, dynamic light scattering (DLS), and transmission el...

متن کامل

Temperature-induced vesicle aggregation in catanionic surfactant systems: the effects of the headgroup and counterion.

The peculiar nature of temperature-induced vesicle aggregation (TIVA) in some catanionic surfactant systems is systematically investigated. On the basis of a general analysis of the intervesicular interactions, the main driving force for this phenomenon is considered to be the intervesicular hydrophobic interaction among the exposed hydrophobic part of the surfactant headgroups. The addition of...

متن کامل

Microstructural Changes in SDS Micelles Induced by Hydrotropic Salt

The addition of low concentrations of the hydrotropic salt p-toluidine hydrochloride (PTHC) to solutions of the anionic surfactant sodium dodecyl sulfate (SDS) promotes the transition from spherical to rodlike micelles. NMR measurements confirm that the hydrotrope adsorbs at the micelle-water interface, thereby screening electrostatic repulsions between the surfactant headgroups. The sphere-to-...

متن کامل

Spontaneous vesicle formation in catanionic mixtures of amino acid-based surfactants: chain length symmetry effects.

The use of amino acids for the synthesis of novel surfactants with vesicle-forming properties potentially enhances the biocompatibility levels needed for a viable alternative to conventional lipid vesicles. In this work, the formation and characterization of catanionic vesicles by newly synthesized lysine- and serine-derived surfactants have been investigated by means of phase behavior mapping ...

متن کامل

Heating-induced micelle to vesicle transition in the cationic-anionic surfactant systems: Comprehensive study and understanding.

Heating-induced micelle to vesicle transition (MVT), which has been rarely reported in surfactant systems, was systemically studied in a number of mixed cationic-anionic surfactant systems. According to the turbidity measurements, the investigated systems can be divided into two classes: Class A and B. Heating-induced MVT was observed in Class A at certain total surfactant concentrations and mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 24 9  شماره 

صفحات  -

تاریخ انتشار 2008